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Urban heat islands (UHIs) represent one of the significant factors in regard to environmental and human
health. UHIs are significantly changeable, responding to the land use type and the dominant anthro-
pogenic activities. In this research, UHIs in El-Minya cities were identified based on Land Surface
Temperature (LST) measurements. Thermal bands of Landsat imagery were processed to produce LST
in the cities of El-Minya governorate in 2001, 2011, and 2021. In addition, the spectral indices;
Normalized Difference Vegetation Index (NDVI), the Modified Normalized Difference Water Index
(MNDWI), and the Normalized Difference Built-up Index (NDBI) were retrieved from the processing of
multispectral Landsat imagery to assess different Land-cover units in the study area and to detect their
correlation with LST/UHIs. Analysis of data indicated that LST variations are corresponding with different
land-cover types. It was found that NDVI and NDWI have a strong negative influence on LST (R = �0.7 and
�0.8 for both indices, respectively), while NDBI has a significant positive correlation (R = 0.85).
Furthermore, the highest LST was detected at the cities of El-Minya, New-El-Minya, and Malawi, conse-
quently. These regions have the greatest potential for UHIs formation among other El-Minya governorate
cities. The year 2021 recorded the highest average LST with a value of 34.1 �C where the largest UHI area
was observed in New-El-Minya (2.74Km2) in 2001, and (2.6 Km2) in 2021, as well as (1.12Km2) in El-
Minya in 2011. It can be concluded that increasing LST and UHIs at different districts of El-Minya arise
from urbanization and industrialization processes.
� 2022 National Authority of Remote Sensing & Space Science. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Growing urbanization and industrialization increase environ-
mental issues like air quality deterioration and rising temperature
(Sigman, et al., 2012; El-Zeiny et al., 2022). Urban heat island (UHI)
represents the higher temperature in urban regions compared with
its non-urban surroundings. It is considered a main feature of
urban climatology (Huang and Lu, 2018), which leads to great
anthropogenic variations in the Earth’s environments (Oke,
1982). The UHIs formation is enhanced in urban regions as a result
of replacing the evaporative vegetation surfaces with impermeable
surfaces, besides releasing anthropogenic heat (Rizwan et al.,
2008).

Detection of the Surface UHIs is mainly relying on the Land Sur-
face Temperature (LST), which has a direct effect on the air temper-
ature through energy exchange between the earth and atmosphere
(Zhou, et al., 2019). Multi-temporal thermal remote sensing can
measure the surface’s temperature (LST) and enables the study of
urban thermal environments at varied spatial and temporal resolu-
tions (Voogt and Oke, 2003; Deilami et al., 2018).

UHIs affect the environment through the alternation of regional
climate (Shepherd, 2005), flora (Zhao et al., 2016), water/air quality
(Grimm et al., 2008), and energy usage (Santamouris et al., 2015).
However, human exposure to extreme heat creates thermal stress
and leads to sunstroke, dehydration, hyperthermia, heat-stroke
and may increase morbidity and mortality rates (Patz et al.,
2005). Nearly 55% of the world’s inhabitants reside in urbanized
regions (UN, 2018); they might be exposed to these UHIs conse-
quent risks, particularly, the elderly, infants, children, and sick
individuals (Kovats and Hajat, 2008). Generally, urbanization is
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occurring at a surpassing rate globally, the modification in urban
areas leads to changing the atmospheric environment at different
geographic scales (Li et al., 2011). The UHI could be more serious
under the warming climate conditions in the rapidly developing
world (Seto et al., 2012).

Monitoring LST and UHIs using multi-temporal thermal
remote sensing imagery have received increasingly greater atten-
tion in recent years due to their impacts on the urban environ-
ment (e.g., Peng et al., 2012; Clinton and Gong, 2013; Li et al.,
2017; Huang and Lu, 2018; Roupioz et al., 2018, Renard et al.,
2019; Miky, 2019, Faisal, et al., 2021, Liu et al., 2022). Chen
et al. (2006) analyzed Landsat images to estimate brightness
temperatures and identify the land-use/cover based on different
biophysical indices.

As well, Roupioz et al. (2018) studied the potentiality of using
satellite data to examine the UHIs depending on LST and emissivity
measurement from various thermal-infrared (TIR) data sources. In
addition, the LST of the major redeveloped urban areas in Lyon-
France was studied by Renard et al., (2019) and correlated with dif-
ferent land-use and spectral indices using Landsat data (Elbeih and
El-Zeiny, 2018).

Several studies were carried out to understand the UHI and its
serious impacts on the environment and humans in Egypt. For
instance, Effat et al. (2014) explored the dynamics of UHIs develop-
ment and its correlation with different land-use in Tanta city. As
well, AbouEl-Magd et al. (2016) studied the UHIs over Cairo using
multi-temporal Landsat data; they proved that urban encroach-
ment over cultivated lands raised UHIs formation. El-Zeiny and
Effat (2017) discussed the remote sensing and GIS ability to mon-
itor LST in El-Fayoum governorate.

Recently, cities are fighting to adapt the climatic changes by
applying many actions to evolve human life quality and comfort.
Thus, this study aims at detecting UHIs in 10-major cities of El-
Minya Governorate, Egypt, namely, ‘‘El-Minya City, El-Fikrih City,
Mallawi City, Dirmouas City, Samalut City, Bani-Mazar City,
Magagh City, El-Adwa City, New-El-Minya City, Matai City” using
earth observations and GIS techniques. In addition, it investigates
the relationship between surface temperature and land-use/cover
indicated by different spectral indices including; NDVI, NDBI, and
MNDWI.
2. Materials and methods

2.1. Study area

El-Minya Governorate is enclosed by Benisuef Governorate
from the north, Assiut and New-Valley Governorates from the
south, Red Sea governorate from the east, and Giza Governorate
from the west (ELDeeb et al., 2015). Fig. 1 shows the location
map of El-Minya Governorate with the administrative boundaries
of each city. El-Minya is bounded from the east and west by 2-
elevated calcareous plateaus, splitting from the center by the Nile
River. The Nile flows along the western region of the valley leading
to increasing vegetated land in the west than the east.

El-Minya is one of Upper Egypt’s most densely populated gover-
norates, with a total area of 32279Km2 and a population count

reached 6,033,000 censuses (CAPMAS-March-2021: https://

www.capmas.gov.eg/). The governorate is divided administratively
into 9-districts (Markaz), 57-local units, 346-villages, 1429-small-
villages and Naga besides New-El-Minya city (El-Bayomi and Ali,
2015). The districts include, from north to south, El-Adwa, Magha-
gha, Bani-Mazar, Matai, Samalout, El-Minya (the capital), Abu-
Qirqas, Mallawi, and Dirmouas. The study area has an arid to
semi-arid climate with prevailing dry warm summer, and mild
with scarce rainfall in winter (Abdel-Moneim et al., 2016).
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Throughout January, the mean temperature is nearly 4.5–20.5 �C,
exceeding 40.0 �C within summer. Relative humidity fluctuates
from 68% in January to more than 70% in June (Attia, 1974).

2.2. Data used

To quantitatively estimate the LST in El-Minya in this study,
Landsat TM and OLI images acquired on 17th July 2001, 28th July
2011, and 8th July 2021 were analyzed. The study area is located
in 2-Landsat scenes; consequently, 6-images were downloaded
from the US Geological Survey (USGS), Earth Resource Observation
Systems Data Center (http://glovis.usgs.gov/). All of the selected
images are nearly cloud-free.

2.3. Pre-processing techniques

Image pre-processing is essential for satellite data analysis, par-
ticularly thermal-IR data to reduce noise, enhance the image’s
quality and eliminate geometric, radiometric, and atmospheric
errors created during the imaging operation. In this research,
atmospheric and geometric correction procedures were applied
using the Universal Transverse Mercator (UTM), Datum (WGS84),
and Zone (36). In addition, the multispectral bands were
mosaicked, followed by masking the 10-cities from the whole
image. For the thermal bands, estimation of LST was performed
firstly before mosaicking and clipping to avoid any changes in
the image DN values.

2.4. Processing techniques

2.4.1. Derivation of at-sensor brightness temperature
Thermal Landsat data (band-6 from Landsat-TM, bands 10 and

11 from Landsat-8) were used to retrieve at-sensor brightness tem-
perature through two steps including, 1) converting digital-
number (DN) received by the thermal sensors to spectral radiance
[(Lk-W/(m2.Sr.lm)] using the following equation (Li et al., 2011).

Lk ¼ Lmin þ ðLmax � LminÞ
ðQcalmax � QcalminÞ

QcalDN � Qcalminð Þ ð1Þ

where, Lmink: minimum radiance, Lmaxk: maximum radiance, QcalDN:
thermal-band DN value. Qcalmin: minimum quantized calibrated
pixel value corresponding to Lmink. Qcalmax: maximum quantized
calibrated pixel value corresponding to Lmaxk.

followed by 2) converting the spectral radiance to at-sensor
brightness temperature (Tb). This can be computed by inverting
the Plank’s function showed in equation-2 (Zhang et al., 2007).

Tb ¼ K2

LnðK1Lkþ1Þ
(2).where the calibration constants K1 = 1282.71 K

and K2 = 666.09 W.m�2.sr�1.lm�1.
The estimated at-sensor brightness temperature represents the

temperature that a blackbody could acquire to generate the same
radiance at the same wavelength, it has quite different properties
than the real objects (Li et al., 2012). Hence, further correction is
required by considering the spectral emissivity of the surface to
explicate the non-symmetrical emissivity of different objects
(Stathopoulou and Cartalis, 2007). In this research, the emissivity
correction procedure is carried out by estimating the NDVI
(Sobrino and Raissouni, 2000). In the case of NDVI having values
less than 0.2 the pixel is considered a non-vegetated area, while
NDVI with values more than 0.5 is considered a fully vegetated
area, and has assumed emissivity (0.99). NDVI with values 0.2–
0.5 is considered a mix of non-vegetated to highly vegetated zones
(Sobrino et al., 2004; Li et al., 2011), thus emissivity is retrieved by
equation-3:

e = evFv + eu(1 � Fv) + de. ð3Þ

https://www.capmas.gov.eg/Pages/Publications.aspx?page_id=7195%26Year=23354
https://www.capmas.gov.eg/Pages/Publications.aspx?page_id=7195%26Year=23354
http://glovis.usgs.gov/


Fig. 1. Location map of El-Minya Governorate with the administrative boundaries of each city.
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Fv ¼ ð NDVI� NDVImin

NDVImax � NDVImin
Þ2 ð4Þ

de=(1 � eu)(1 � Fv)Fev. ð5Þ
where, ev and eu are the emissivity of vegetation and built-up sur-
faces, respectively. Fv is the vegetation ration, NDVImax, and NDVImin

indicate the NDVI values in highly vegetated and non-vegetated
regions, de substitutes the effect of the geometrical distribution of
natural surfaces and the internal reflections, F is a shape factor with
a mean value, assuming different geometrical distributions, equals
0.55 (Sobrino et al., 1990; Sobrino et al., 2004).

2.4.2. Retrieval of land surface temperature
The land surface temperature was calculated from formula-6 in

kelvin degrees (Artis and Carnahan, 1982; Li et al., 2012;
Shahfahad, et al., 2022), and converted to Celsius degrees through
formula-7.

Ts ¼ Tb

1þ ðkTb= /Þlne ð6Þ

Tð�C) = Tð�KÞ—273.15 ð7Þ
where, Ts = surface radiant temperature (�K), k = wavelength, /= hc/
K (1.438 � 10�2 mK), h = Planck constant (6.626 � 10�34 Js�1),
C = light velocity (2.998 � 108 ms�1), K = Boltzman constant
(1.38 � 10�23JK�1).

2.4.3. Detection of the UHIs
In order to identify the UHIs, LST data were analyzed statisti-

cally to detect the regions with higher LST than their surroundings
according to Zhang et al. (2007). Thus, the mean LST value
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(LSTmean) plus one standard deviation (LSTSTD) was used as a
threshold value to define the UHIs for each year in El-Minya cities
(equation-8).

UHI = LSTmean + STD ð8Þ
2.4.4. Computation of spectral indices
The widely employed Spectral Indices are reliable indicators

for closely observing Earth surfaces using remote sensing tech-
nology (Ramaiah, et al., 2020). By using multi-temporal
Landsat-8 imagery, spectral indices could be detected and help
us to understand the changes in LULC, urban expansion patterns
as well as its impacts on land surface temperature (El-Zeiny,
2022). The NDVI was calculated to recognize the vegetated
regions by doing a ratio between the reflectance values of
near-infrared (NIR) and red (R) bands of Landsat imagery
(equation-9) (Lu et al., 2009).

NDVI ¼ NIR� R
NIR þ R

ð9Þ

The NDBI was applied to isolate the built-up land from urban
areas, based on a ratio between the middle-infrared (MIR) and
NIR bands of Landsat data (equation-10) (Liu and Zhang, 2011).

NDBI ¼ MIR � NIR
MIR þ NIR

ð10Þ

Furthermore, the MNDWI was used to delineate the open water
features by applying a ratio between the MIR and Green (G) bands
of Landsat data (equation-11) (Xu, 2006).

MNDWI ¼ G�MIR
GþMIR

ð11Þ



Fig. 2. Spatial distribution maps of LST (�C) in El-Minya cities in a)2001, b)2011, and
c)2021.

Table 1
Statistics of LST in degree Celsius (�C) for El-Minya Cities in 2001, 2011, and 2021.

City Stats 2001 2011

MIN MAX Mean STD MIN

El-Minya 22.54 42.83 32.59 3.50 24.67
El-Fikrih 24.67 42.46 30.57 2.81 26.35
Mallawi 21.68 40.96 30.93 3.42 23.83
Dirmouas 24.67 37.16 28.15 2.13 26.35
Samalut 22.54 39.45 30.95 2.94 24.67
Bani-Mazar 25.10 37.16 30.60 2.35 27.60
Magagh 22.54 39.45 29.27 3.04 24.25
El-Adwa 23.40 36.00 28.25 2.44 27.60
New-El-Minya 21.68 40.21 35.00 2.39 17.73
Matai 25.10 37.16 30.48 2.51 26.77
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3. Results and discussion

3.1. Estimation of LST

Analyzing LST during the past 20 years (2001–2021) showed
that areas of high LST in 2001 were concentrated in the cities of
El-Minya, New-El-Minya, and Mallawi while other cities have
low-moderate LST. Fig. 2 shows the LST distribution for the 10-
cities of El-Minya Governorate during the period of investigation.
In 2011, the regions with high LST are located in El-Minya, New-
El-Minya, Mallawi, Samallot, and Bani-Mazar. Recently in 2021,
the highest LST was found in the cities of El-Minya, New-El-
Minya, and Mallawi. Among the three dates, El-Minya, and New-
El-Minya cities registered the highest temperatures nearly 40–
44 �C. The year 2021 has the highest mean LST with a value of
34.1 �C, while the lowest LST was recorded in 2001 (31.4 �C). The
minimum observed LST was 21.7 �C, 17.7 �C, and 25.3 �C, while
the maximum recorded LST was 42.8 �C, 43.9 �C, and 42.4 �C in
2001, 2011, and 2021, respectively. On contrary, the cities of Dir-
mouas, Matai, and El-Adwa showed slightly lower LST values.
Table 1 explores the LST statistics for each city within the period
of investigation. The retrieved LST were compared with air temper-
ature measurements at 2-meters height on the same time and
location. As shown in Table 2, the maximum air temperature (ob-
tained from MERRA-2) was 39.8 �C, 40.6 �C and 39.9 �C in 2001,
2011, and 2021, respectively.

The observed high LST returns to the effect of built-up areas and
road networks as well as wide space for industrial activities, except
for New-El-Minya city which is a newly constructed city and has a
wide space of desert/bare land. Furthermore, the eastern part of
the Nile bank at El-Minya city is a mountainous and valleys region,
mainly composed of limestone, marl, and clay rocks (Abdelaal
et al., 2017). The construction and composition materials in these
urban areas (e.g., bricks and concrete), and bare land/desert have
high radiant temperature and low albedo, which lead to absorbing
most of the incoming solar radiation and reradiating it back at
night as longwave radiation. Their high efficiency in energy storage
leads to increase surface temperature.

On the other hand, low LST resulted from the effect of vegeta-
tion cover and water (Nile River and Canals) which reduce the
2021

MAX Mean STD MIN MAX Mean STD

43.57 33.62 3.18 25.75 42.00 34.65 2.75
42.83 30.72 2.76 28.11 39.92 33.37 2.23
41.34 32.71 3.03 25.27 42.40 35.44 2.95
41.71 29.36 2.10 29.83 39.89 34.20 1.61
41.71 32.04 2.75 25.63 40.49 33.54 2.44
39.83 32.55 2.63 29.38 39.41 33.95 1.98
40.21 30.84 2.92 25.26 39.14 31.56 3.12
37.55 32.22 2.06 29.11 38.84 32.51 2.06
43.93 32.57 3.89 30.23 41.76 35.77 1.18
37.93 31.99 2.16 28.29 39.50 32.82 2.05

Table 2
Statistics of LST and air temperature (Air T) in degree Celsius (�C) in El-Minya
governorate in 2001, 2011, and 2021.

Year 2001 2011 2021

LST Air T LST Air T LST Air T

MIN. 21.7 24.2 17.7 24.1 25.3 24.4
MAX. 42.8 39.8 43.9 40.6 42.4 39.9
Mean 31.4 32.0 31.9 32.3 34.1 32.1



Fig. 3. UHIs in El-Minya cities extracted from LST data in a)2001, b)2011 and c)
2021. The used base maps in the three figures are the Landsat-TM and Landsat-8
captured at the same time of LST/UHIs retrieval.

Table 3
The estimated area (Km2) of UHI in El-Minya cities in 2001, 2011, and 2021.

City Area UHI area/Km2

2001 2011 2021

Bani-Mazar 0 0.20 0.20
Dirmouas 0 0.06 0.39
El-Adwa 0 0.04 0.09
El-Fikrih 0.33 0.21 0.35
El-Minya 0.77 1.12 1.44
Magagh 0.05 0.12 0.12
Mallawi 0.20 0.60 2.37
Matai 0 0.04 0.11
New-El-Minya 2.74 0.60 2.60
Samalut 0.15 0.26 0.31
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thermal load in the region. Vegetation reduces temperature due to
the evapotranspiration and photosynthesis processes that assist in
absorbing a large portion of the incident solar radiation and
increases the latent heat fluxes, moisture, and surface permeability
(Kumar et al., 2012). Gao (1993) revealed that green areas can
decrease air temperatures by about 2 �C. In addition, water with
its high heat capacity can evaporate from the surface and reduce
temperature. These results are consistent with Li et al. (2012)
and Miky (2019) who disclosed that urban/built-up/roads areas
exhibited the largest LST followed by bare land, while the lowest
LST was detected in water surfaces and cultivated land.

3.2. Detection of UHIs

Fig. 3 shows the UHI maps for each city during the analysis per-
iod. Results suggested that the spatial distribution of high LST and
UHIs is a scattered pattern over built-up areas, semi-bare and bare-
lands as well as limestone deposits along the eastern side of the
river at New-El-Minya city. Similar to high LST, UHIs were concen-
trated in the cities of El-Minya, New-El-Minya, and Mallawi. The
maximum UHI area is changeable reporting 2.74 Km2 in New-El-
Minya, 1.12 Km2 in El-Minya, and 2.6 Km2 in New-El-Minya again,
in 2001, 2011, and 2021, respectively. Table 3 explores the esti-
mated area of UHIs in each city. The cities of Bani-Mazar, Dir-
mouas, El-Adwa, Magagh, and Matai have a low potentiality for
UHI formation and very low area. This returns to the different land
cover types that influence energy storage and temperature as well.

Results disclosed that some regions with UHIs in 2001 disap-
peared in 2021 and vice versa. For example, in Fig. 4(a), in Mallawi
city, UHIs appeared in two regions in the north and the south in
2021, while in 2011 there was no presence of UHIs. As explored
in the figure these regions were used as agricultural land in the
past and then converted to urban areas in 2021. The area has some
buildings and a region under development. This plays a role in
intensifying the LST and presence of UHIs. Furthermore, the indus-
trial areas enhance the UHIs formation as in El-Fikrih city (Fig. 4b)
where the UHI area was observed at the Sugar Factory of Abu-
Qirqas, in addition to the other industrial complexes in El-Minya
city (such as grinding marble) and Mallawi city (e.g. food, sugar
and spinning).

3.3. Correlation between LST and spectral indices

The derived spectral indices provide significant information on
LST and UHIs occurrence in the study area considering NDVI
(Fig. 5), MNDWI (Fig. 6), and NDBI (Fig. 9) are representing vegeta-
tion, water/moisture, and urban/built-up areas, respectively. The
overall mean values of these indices are 0.59, 0.4, and �0.12 for
NDVI, MNDWI, and NDBI, respectively. Table 4 explores the statis-
tics of NDVI.

Relationships among LST, UHIs, and the spectral indices
revealed that regions with elevated LST values have low NDVI
and MNDWI. The land-cover type influences not only the LST but
also the UHI formation. Consequently, the UHIs are rarely abun-
dant over these land-cover types due to their influence on cooling
the surface. A significant negative correlation was observed
between LST and NDVI with a correlation coefficient (R = -0.7)
and coefficient of determination (R2 = 0.8). As well, MNDWI is neg-
atively correlated with LST (R = -0.8) (Fig. 7& Fig. 8) which is
matching with Kumar et al. (2012). Further, several built-up and
some bare-land regions had positive values same as water and
moisture which returns to the noise caused by built-up land and
desert in the infrared region as explored in Xu (2006).

In contrast, NDBI has a strong positive correlation with the LST
and UHIs with a correlation coefficient (R = 0.85) and coefficient of
determination (R2 = 0.7) as shown in Figs. 9 and 10. The areas char-
613



Fig. 4. Example for describing areas of UHIs in a) Mallawi city, b) El-Fikrih city.
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Fig. 5. Variations in NDVI in El-Minya cities in a)2001, b)2011 and c)2021.
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Fig. 6. Variations in NDWI in El-Minya cities in 2021.

Table 4
Statistics of NDVI in El-Minya cities in 2001, 2011, and 2021.

City NDVI 2001 2011 2021

MIN MAX MEAN STD MIN MAX MEAN STD MIN MAX MEAN STD

El-Minya �1.0 0.94 0.43 0.25 �0.5 0.96 0.45 0.23 �0.96 0.97 0.68 0.14
El-Fikrih 0.11 0.94 0.64 0.20 0.04 0.92 0.64 0.18 0.40 0.98 0.81 0.12
Mallawi �1.0 1.00 0.54 0.24 �0.28 0.87 0.48 0.18 �1.0 0.96 0.71 0.11
Dirmouas 0.09 0.94 0.74 0.17 0.04 0.88 0.67 0.14 �1.0 1.00 0.81 0.09
Samalut �0.57 0.93 0.60 0.23 �1.0 0.94 0.53 0.27 0.25 0.98 0.71 0.18
Bani-Mazar 0.07 0.92 0.55 0.21 0.02 0.95 0.49 0.27 0.41 0.98 0.66 0.17
Magagh �0.63 0.92 0.59 0.23 �0.77 0.93 0.54 0.26 0.05 1.00 0.72 0.18
El-Adwa �0.11 0.91 0.65 0.18 �0.08 0.94 0.59 0.22 �0.73 0.98 0.78 0.14
New-El-Minya 0.08 0.73 0.14 0.02 �0.03 0.66 0.08 0.06 0.36 0.90 0.44 0.06
Matai 0.06 0.92 0.61 0.19 0.06 0.96 0.61 0.22 0.44 0.98 0.78 0.15
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Fig. 8. Scatter diagram with a linear regression between LST and MNDWI in 2001, 2011, and 2021.

Fig. 7. Scatter diagram with a linear regression between LST and NDVI in 2001, 2011, and 2021.
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Fig. 9. Changes in NDBI in El-Minya cities in a)2001, b)2011 and c)2021.
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acterized by high LST are accompanied by elevated NDBI values.
This highlights the effect of urban/built-up land with its imperme-
able surfaces on increasing LST intensity and raising the potential-
ity of UHIs formation.

Moreover, land-use in El-Minya cities has a great effect on
increasing temperature by direct and indirect ways. Land-use can
be represented by several human activities in the cities like trans-
portation and roads network, industry, besides using conditioning
systems/heaters. These activities consume huge amounts of energy
and consequently generate more anthropogenic heat which
strengthens the LST and UHIs. El-Minya governorate has multiple
industrial activities such as sugar, and cement, at the eastern side
of the government in addition to wood, metal, weaving, and spin-
ning industries. The anthropogenic heat emitted from these activ-
ities along with the construction materials of factories, paved
streets, and un-shaded open areas can increase the thermal heat
stress in the region. Taha et al. (1992) demonstrated that anthro-
pogenic heating in a big city center can form a UHI of up to 2–
3 �C during the day and at night. The intensity of anthropogenic
heating depends on energy usage patterns, power generation sys-
tems as well as transportation.
4. Conclusion

In this research, LST and UHI over the 10-cities of El-Minya
Governorate were assessed in July month of 2001, 2011, and
2021 based on thermal and multispectral analyses of Landsat ima-
gery. The spatial distribution and quantitative relationship
between LST and the spectral indices (NDVI, MNDWI, and NDBI)
were also investigated. High LST accompanied by UHI formation
is mainly found in urban/built-up areas as well as bare land/desert.
UHIs have a scattered pattern of small boundaries in the cities of
El-Minya, New-El-Minya, Mallawi, and Samalout. Results showed
that high LST/UHI occurrence probability is lower over cultivated
land and moist surfaces. Vegetation cover and surface moisture
abundance reduce the surface temperature while the built-up
and bare lands have an opposite effect. El-Minya, New-El-Minya,
and Mallawi have the highest LST and UHIs than other cities.
Among the 10-cities of El-Minya, New-El-Minya city had the high-
est UHI area nearly 2.74 Km2 and 2.6 Km2 in 2001 and 2021,
respectively, while in 2011, El-Minya city recorded the greatest
UHI area recording 1.12 Km2. On the contrary, the cities of Bani-
Mazar, Dirmouas, El-Adwa, Magagh, and Matai have a very low
UHI area and LST as well.



Fig. 10. Scatter diagram with a linear regression analysis between LST and NDBI in 2001, 2011, and 2021.
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Finally, urban planning policies should suggest solutions
through implementing sustainable adaptation strategies to raise
the inhabitants’ thermal comfort, increase green and shaded areas.
Realizing the UHIs besides assessing the impacts of urban develop-
ment and thermal stress is the point to start with to solve this
problem. The present paper supports urban planners and
decision-makers with the necessary information that helps to mit-
igate the formation of UHIs in El-Minya cities.

Acknowledgement

The authors would like to express their gratitude to the United
States Geological Survey (USGS) Earth Explorer for providing the
Landsat imagery.

References

Abdelaal, A.M., Sameah, S., Ahmed, A., 2017. Characterization of calcium carbonate
rocks, east ElMinya deposits for possibility uses as industrial raw materials. J.
Min. Eng. 19 (1).

AbouEl-Magd, I., Ismail, A., Zanaty, N., 2016. Spatial variability of urban heat islands
in Cairo City, Egypt using time series of landsat satellite images. Int. J. Adv.
Remote Sens. GIS. 5 (3), 1618–1638.

Abdel-Moneim, A., Fernández-Álvarez, J., Abu-El-Ella, E.M., Masoud, A.M., 2016.
Groundwater management at west El-Minya Desert Area, Egypt using
numerical modeling. J.GEP. 4, 66–76.

Attia, F.A., 1974. Parameters and Characteristics of the Groundwater Reservoir in
Upper Egypt. Faculty of Engineering, Cairo University. Ph.D. Thesis.

Chen, X.L., Zhao, H.M., Li, P.X., Yin, Z.Y., 2006. Remote sensing image–based analysis
of the relationship between urban heat island and land use/cover changes. J.
Remote Sens Environ. 104, 133–146.

Clinton, N., Gong, P., 2013. Modis detected surface urban heat islands and sinks:
Global locations and controls. J. Remote Sens. Environ. 134, 294–304.

Deilami, K., Kamruzzaman, M., Liu, Y., 2018. Urban heat island effect: A systematic
review of spatio-temporal factors, data, methods, and mitigation measures. Int.
J. Appl. Earth Obs. Geoinf. 67, 30–42.

Effat, H.A., Taha, L.G., Mansour, K.F., 2014. Change detection of land cover and urban
heat islands using multi-temporal landsat images, application in Tanta City,
Egypt. Open J. Remote Sens. Position. 1 (2).

Elbeih, S.F., El-Zeiny, A.M., 2018. Qualitative assessment of groundwater quality
based on land use spectral retrieved indices: Case study Sohag Governorate,
Egypt. Remote Sens. Appl. Soc. Environ. 10, 82–92. https://doi.org/10.1016/j.
rsase.2018.03.001.
619
El-Bayomi, G., Ali, R.R., 2015. Assessment of urban sprawl on ElMinya archeological
sites. Egypt. Res. J. Appl. Sci. 15, 264–270.

ELDeeb, H., El Rawy, M., Habib, E., 2015. Water Resources Management: Case Study
of El Minia Governorate. Egypt. J.sci. eng. res. 6 (6).

El-Zeiny, A.M., 2022. Review of land-use impacts on surface water quality in Egypt.
J. Indian Soc. Remote Sens. https://doi.org/10.1007/s12524-022-01505-y.

El-Zeiny, A.M., Effat, H.A., 2017. Environmental monitoring of spatiotemporal
change in land use/land cover and its impact on land surface temperature in El-
Fayoum governorate. Egypt. J. Remote Sens Appl. 8, 266–277.

El-Zeiny, A., Effat, H., Mansou, R.K., Shahin, A., Elwan, K., 2022. Geo-environmental
monitoring of coastal and land resources of Port Said Governorate, Egypt. Egypt.
J. Remote Sens. Space Sciences 25 (1), 157–172. https://doi.org/10.1016/j.
ejrs.2022.01.009.

Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X., Briggs, J.M.,
2008. Global change and the ecology of cities. Science. 319, 756–760.

Huang, Q., Lu, Y., 2018. Urban heat island research from 1991 to 2015: A
bibliometric analysis. Theor. Appl. Climatol. 131, 1055–1067.

Kovats, R.S., Hajat, S., 2008. Heat stress and public health: A critical review. Annu.
Rev. Public Health. 29, 41–55.

Kumar, K.S., Bhaskar, P.U., Padmakumari, K., 2012. Estimation of land surface
temperature to study urban heat island effect using Landsat ETM+ image. Int. J.
Eng. Sci. Technol. 4 (02), 771–778.

Li, J., Song, C., Cao, L., Zhu, F., Meng, X., Wu, J., 2011. Impacts of landscape structure
on surface urban heat islands: A case study of Shanghai. China. Remote Sens
Environ. 115, 3249–3263.

Li, X., Zhou, Y., Asrar, G.R., Imhoff, M., Li, X., 2017. The surface urban heat island
response to urban expansion: A panel analysis for the conterminous United
States. Sci. Total Environ. 605, 426–435.

Li, Y., Zhang, H., Kainz, W., 2012. Monitoring patterns of urban heat islands of the
fast–growing Shanghai metropolis, China: using time–series of Landsat TM/
ETM+ data. Int. J. Appl Earth Obs Geoinf 19, 127–138.

Liu, L., Zhang, Y., 2011. Urban heat island analysis using the Landsat TM data and
ASTER data: A case study in Hong Kong. Remote Sens. 3, 1535–1552.

Lu,Y., Feng, P., Shen, C. Sun, J. 2009. Urban heat island in summer of Nanjing based
on TM data. In proceedings of 2009 Joint Urban Remote Sensing Event,
Shanghai, China, 20–22 May 2009, 1–5.

Miky, Y.H., 2019. Remote sensing analysis for surface urban heat island detection
over Jeddah. Saudi Arabia. Appl Geomat. 11, 243–258.

Oke, T.R., 1982. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc.
108, 1–24.

Patz, J.A., Campbell-Lendrum, D., Holloway, T., Foley, J.A., 2005. Impact of regional
climate change on human health. Nature 438, 310–317.

Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Breon, F.-M., Nan, H., Zhou, L.,
Myneni, R.B., 2012. Surface urban heat island across 419 global big cities.
Environ. Sci. Technol. 46, 696–703.

Renard, F., Alonso, L., Fitts, Y., Hadjiosif, A., Comby, J., 2019. Evaluation of the Effect
of Urban Redevelopment on Surface Urban Heat Islands. Remote Sens. 11, 299.

Rizwan, A.M., Dennis, L.Y.C., Liu, C., 2008. A review on the generation, determination
and mitigation of urban heat island. J. Environ. Sci. 20, 120–128.

http://refhub.elsevier.com/S1110-9823(22)00043-6/h0005
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0005
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0005
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0010
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0010
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0010
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0015
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0015
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0015
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0020
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0020
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0030
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0030
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0030
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0035
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0035
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0040
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0040
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0040
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0045
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0045
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0045
https://doi.org/10.1016/j.rsase.2018.03.001
https://doi.org/10.1016/j.rsase.2018.03.001
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0055
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0055
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0060
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0060
https://doi.org/10.1007/s12524-022-01505-y
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0070
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0070
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0070
https://doi.org/10.1016/j.ejrs.2022.01.009
https://doi.org/10.1016/j.ejrs.2022.01.009
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0080
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0080
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0085
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0085
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0090
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0090
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0095
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0095
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0095
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0100
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0100
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0100
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0105
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0105
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0105
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0110
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0110
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0110
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0115
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0115
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0125
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0125
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0130
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0130
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0135
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0135
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0140
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0140
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0140
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0145
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0145
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0150
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0150


K. Mansour, Mohamed Alkhuzamy Aziz, S. Hashim et al. Egypt. J. Remote Sensing Space Sci. 25 (2022) 609–620
Roupioz, L., Nerry, F., Colin, J., 2018. Correction for the impact of the surface
characteristics on the estimation of the effective emissivity at fine resolution in
urban areas. Remote Sens. 2018 (10), 746.

Santamouris, M., Cartalis, C., Synnefa, A., Kolokotsa, D., 2015. On the impact of urban
heat island and global warming on the power demand and electricity
consumption of buildings—A review. Energy Build. 98, 119–124.

Seto, K.C., Güneralp, B., Hutyra, L.R., 2012. Global forecasts of urban expansion to
2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci.
USA 109, 16083–16088.

Shepherd, J.M., 2005. A review of current investigations of urban-induced rainfall
and recommendations for the future. Earth Interact. 9, 1–27.

Sigman, R., Hilderink, H., Delrue, N., Braathen, N.A., Leflaive, X., 2012. OECD
Environmental Outlook to 2050. OECD Environ. Outlook.

Sobrino, J.A., Caselles, V., Becker, F., 1990. Significance of the remotely sensed
thermal infrared measurements obtained over a citrus orchard. ISPRS
Photogramm. Eng. Remote Sens. 44, 343–354.

Sobrino, J.A., Raissouni, N., 2000. Toward remote sensing methods for land cover
dynamic monitoring, application to Morocco. Int. J. Remote Sens. 21, 353–366.

Sobrino, J.A., Jiménez-Muñoz, J.C., Paolini, L., 2004. Land surface temperature
retrieval from LANDSAT TM5. Remote Sens. Environ. 90 (4), 434–440.

Stathopoulou, M., Cartalis, C., 2007. Daytime urban heat islands from Landsat ETM+
and Corine land cover data: an application to major cities in Greece. Solar
Energy. 81, 358–368.

Taha, H., Akbari, H., Sailor, D., Ritschard, R. 1992. Causes and effects of heat islands:
sensitivity to surface parameters and anthropogenic heating. Lawrence
Berkeley Laboratory Report No. 29864.

UN. United Nations Department of Economic Social Affairs Population Division.
World Urbanization Prospects: The 2018 Revision; Online Edition; United
Nations: New York, NY, USA, 2018.
620
Voogt, J.A., Oke, T.R., 2003. Thermal remote sensing of urban climates. Remote Sens.
Environ. 86, 370–384.

Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance
open water features in remotely sensed imagery. Int. J. Remote Sens. 27 (14),
3025–3033. https://doi.org/10.1080/01431160600589179.

Zhang, J., Wang, Y., Wang, Z., 2007. Change analysis of land surface temperature
based on robust statistics in the estuarine area of Pearl River (China) from 1990
to 2000 by Landsat TM/ETM+ data. Int. J. Remote Sens. 28 (10), 2383–2390.

Zhao, S., Liu, S., Zhou, D., 2016. Prevalent vegetation growth enhancement in urban
environment. Proc. Natl. Acad. Sci. USA 113, 6313–6318.

Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R.,
Qiao, Z., Sobrino, J.A., 2019. Satellite remote sensing of surface urban heat
islands: progress, challenges, and perspectives. Remote Sens. 11, 48.

Liu, X., Ming, Y., Liu, Y., Yue, W., Han, G., 2022. Influences of landform and urban
form factors on urban heat island: Comparative case study between Chengdu
and Chongqing. Sci. Total Environ. 820, 153395.

Faisal, A., Al-Kafy, A., Al-Rakib, A., Akter, K.S., Jahir, D.M.A., Sikdar, M.S., Ashrafi, T.J.,
Mallik, S., Rahman, M.M., 2021. Assessing and predicting land use/land cover,
land surface temperature and urban thermal field variance index using Landsat
imagery for Dhaka Metropolitan area. Environ. Challenges 4, 100192.

Ramaiah, M., Ram Avtar, R., Rahman. M.M. 2020. Land Cover Influences on LST in
Two Proposed Smart Cities of India: Comparative Analysis Using Spectral
Indices. Land, 9, 292; 10.3390/land9090292.

Artis, D.A., Carnahan, W.H., 1982. Survey of emissivity variability in thermography
of urban areas. Remote Sens. Environ. 12 (4), 313–329.

Shahfahad, M.W., Naikoo, A.R., Towfiqul Islam, M.d., Mallick, J., Rahman, A., 2022.
Land use/land cover change and its impact on surface urban heat island and
urban thermal comfort in a metropolitan city. Urban Climate 41, 101052.

http://refhub.elsevier.com/S1110-9823(22)00043-6/h0155
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0155
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0155
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0160
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0160
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0160
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0165
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0165
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0165
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0170
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0170
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0175
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0175
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0180
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0180
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0180
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0185
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0185
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0190
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0190
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0195
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0195
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0195
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0215
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0215
https://doi.org/10.1080/01431160600589179
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0225
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0225
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0225
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0230
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0230
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0240
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0240
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0240
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0245
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0245
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0245
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0250
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0250
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0250
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0250
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0260
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0260
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0265
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0265
http://refhub.elsevier.com/S1110-9823(22)00043-6/h0265

	Impact of anthropogenic activities on urban heat islands in major cities of El-Minya Governorate, Egypt
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Data used
	2.3 Pre-processing techniques
	2.4 Processing techniques
	2.4.1 Derivation of at-sensor brightness temperature
	2.4.2 Retrieval of land surface temperature
	2.4.3 Detection of the UHIs
	2.4.4 Computation of spectral indices


	3 Results and discussion
	3.1 Estimation of LST
	3.2 Detection of UHIs
	3.3 Correlation between LST and spectral indices

	4 Conclusion
	Acknowledgement
	References


